Internship@CGS IPSL

À l’IPSL-CGS, le climat j’en fais mon métier !

Les offres

Si tu es intéressé·e par une offre de stage, rapproche-toi de l’équipe pédagogique de ta formation, pour faire valider l’offre de stage proposée.

popup cross
AI retrievals of land and sea surface temperatures
créé 05-09-2025
date de finSe ferme: 04-05-2026
emplacement Vues: 288
Contact Email: webmaster@ipsl.fr
Informations sur le stage
Niveau de recrutement: Master - M2
Statut: En recherche de candidat
Durée du stage: 6 mois
Ville: Paris
Publié: 10-09-2025
Postuler avant le: 04-05-2026
Nom encadrant: Sarah Safieddine
E-mail de contact: sarah.safieddine@latmos.ipsl.fr
Fonction: chercheuse CNRS
Lien avec l'IPSL: Travaille à l’IPSL
Autres Encadrants:
Equipe Encadrante:
Gratification de stage: Oui
Possibilité de poursuite en thèse: Incertain
Thématiques du sujet: Analyse de donnees, Intelligence Artificielle
Mots clé thématiques: Algorithmique pour l’observation de la terre, Climats urbains, Intelligence artificielle, apprentissage automatique, apprentissage profond, Météorologie, Télédétection par satellite, Variabilité du climat, extrêmes climatiques
Lié à un thème de recherche IPSL: Oui
Thèmes de recherche IPSL: , Statistics for Analysis, Modelling and Assimilation (SAMA)
La description

Land and Sea Surface Temperatures (LST and SST respectively) are essential climate variables, and are typically measured by infrared sounders. It is particularly important when studying Urban Heat Islands, a typical phenomenon that occurs in cities where the urban surface is hotter than the surrounding.

The Geostationary Interferometric Infrared Sounder (GIIRS) is an infrared hyper-spectral space-borne interferometer that flies in geostationary orbit to take measurements of three-dimensional atmospheric structure over East Asia, and in particular China (figure 1).

Over China, there are measurements every hour on average, at an 8km resolution.

At LATMOS, we work on the IASI instrument, an infrared sounder, similar to GIIRS but in polar orbit (crosses the same location two times per day). We have developed for IASI a dedicated Land Surface Temperature product (https://iasi-ft.eu/products/skt/), that we would like to adapt and enhance to GIIRS data.

The objective of this internship is to explore existing AI methods and develop new ones to calculate land and sea surface temperatures from the raw data of GIIRS (radiances), in preparation for a similar mission/instrument with similar technical abilities over Europe and Africa (the Infrared Sounder IRS on board MeteoSat third generation).

Details of the work:

·        Examine and explore the differences between the IASI and GIIRS spectra

·        Investigate the existing LST and SST retrieval codes and adapt them to GIIRS over China.

·        Compare and validate with existing products

·        Adapt to IRS over Europe and Africa

Prerequisites and skills required

•       M2 in meteorology, math, AI tools, or M2 in environmental sciences, atmospheric physics/chemistry

•       Skills in computer programming (Python, Matlab, other) and the linux environment

•       Knowledge in Artificial Intelligence/deep learning/machine learning tools and methods

•       English proficiency